Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 340
Filter
1.
Immunity ; 56(7): 1681-1698.e13, 2023 Jul 11.
Article in English | MEDLINE | ID: covidwho-20243335

ABSTRACT

CD4+ T cell responses are exquisitely antigen specific and directed toward peptide epitopes displayed by human leukocyte antigen class II (HLA-II) on antigen-presenting cells. Underrepresentation of diverse alleles in ligand databases and an incomplete understanding of factors affecting antigen presentation in vivo have limited progress in defining principles of peptide immunogenicity. Here, we employed monoallelic immunopeptidomics to identify 358,024 HLA-II binders, with a particular focus on HLA-DQ and HLA-DP. We uncovered peptide-binding patterns across a spectrum of binding affinities and enrichment of structural antigen features. These aspects underpinned the development of context-aware predictor of T cell antigens (CAPTAn), a deep learning model that predicts peptide antigens based on their affinity to HLA-II and full sequence of their source proteins. CAPTAn was instrumental in discovering prevalent T cell epitopes from bacteria in the human microbiome and a pan-variant epitope from SARS-CoV-2. Together CAPTAn and associated datasets present a resource for antigen discovery and the unraveling genetic associations of HLA alleles with immunopathologies.


Subject(s)
COVID-19 , Deep Learning , Humans , Captan , SARS-CoV-2 , HLA Antigens , Epitopes, T-Lymphocyte , Peptides
2.
Viruses ; 15(5)2023 05 17.
Article in English | MEDLINE | ID: covidwho-20240301

ABSTRACT

T-cell recognition of antigen epitopes is a crucial step for the induction of adaptive immune responses, and the identification of such T-cell epitopes is, therefore, important for understanding diverse immune responses and controlling T-cell immunity. A number of bioinformatic tools exist that predict T-cell epitopes; however, many of these methods highly rely on evaluating conventional peptide presentation by major histocompatibility complex (MHC) molecules, but they ignore epitope sequences recognized by T-cell receptor (TCR). Immunogenic determinant idiotopes are present on the variable regions of immunoglobulin molecules expressed on and secreted by B-cells. In idiotope-driven T-cell/B-cell collaboration, B-cells present the idiotopes on MHC molecules for recognition by idiotope-specific T-cells. According to the idiotype network theory formulated by Niels Jerne, such idiotopes found on anti-idiotypic antibodies exhibit molecular mimicry of antigens. Here, by combining these concepts and defining the patterns of TCR-recognized epitope motifs (TREMs), we developed a T-cell epitope prediction method that identifies T-cell epitopes derived from antigen proteins by analyzing B-cell receptor (BCR) sequences. This method allowed us to identify T-cell epitopes that contain the same TREM patterns between BCR and viral antigen sequences in two different infectious diseases caused by dengue virus and SARS-CoV-2 infection. The identified epitopes were among the T-cell epitopes detected in previous studies, and T-cell stimulatory immunogenicity was confirmed. Thus, our data support this method as a powerful tool for the discovery of T-cell epitopes from BCR sequences.


Subject(s)
COVID-19 , T-Lymphocytes , Humans , Epitopes, T-Lymphocyte , Epitopes, B-Lymphocyte , SARS-CoV-2 , Receptors, Antigen, T-Cell , Receptors, Antigen, B-Cell
3.
Front Cell Infect Microbiol ; 13: 1134802, 2023.
Article in English | MEDLINE | ID: covidwho-20239332

ABSTRACT

There has been progressive improvement in immunoinformatics approaches for epitope-based peptide design. Computational-based immune-informatics approaches were applied to identify the epitopes of SARS-CoV-2 to develop vaccines. The accessibility of the SARS-CoV-2 protein surface was analyzed, and hexa-peptide sequences (KTPKYK) were observed having a maximum score of 8.254, located between amino acids 97 and 102, whereas the FSVLAC at amino acids 112 to 117 showed the lowest score of 0.114. The surface flexibility of the target protein ranged from 0.864 to 1.099 having amino acid ranges of 159 to 165 and 118 to 124, respectively, harboring the FCYMHHM and YNGSPSG hepta-peptide sequences. The surface flexibility was predicted, and a 0.864 score was observed from amino acids 159 to 165 with the hepta-peptide (FCYMHHM) sequence. Moreover, the highest score of 1.099 was observed between amino acids 118 and 124 against YNGSPSG. B-cell epitopes and cytotoxic T-lymphocyte (CTL) epitopes were also identified against SARS-CoV-2. In molecular docking analyses, -0.54 to -26.21 kcal/mol global energy was observed against the selected CTL epitopes, exhibiting binding solid energies of -3.33 to -26.36 kcal/mol. Based on optimization, eight epitopes (SEDMLNPNY, GSVGFNIDY, LLEDEFTPF, DYDCVSFCY, GTDLEGNFY, QTFSVLACY, TVNVLAWLY, and TANPKTPKY) showed reliable findings. The study calculated the associated HLA alleles with MHC-I and MHC-II and found that MHC-I epitopes had higher population coverage (0.9019% and 0.5639%) than MHC-II epitopes, which ranged from 58.49% to 34.71% in Italy and China, respectively. The CTL epitopes were docked with antigenic sites and analyzed with MHC-I HLA protein. In addition, virtual screening was conducted using the ZINC database library, which contained 3,447 compounds. The 10 top-ranked scrutinized molecules (ZINC222731806, ZINC077293241, ZINC014880001, ZINC003830427, ZINC030731133, ZINC003932831, ZINC003816514, ZINC004245650, ZINC000057255, and ZINC011592639) exhibited the least binding energy (-8.8 to -7.5 kcal/mol). The molecular dynamics (MD) and immune simulation data suggest that these epitopes could be used to design an effective SARS-CoV-2 vaccine in the form of a peptide-based vaccine. Our identified CTL epitopes have the potential to inhibit SARS-CoV-2 replication.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , Molecular Docking Simulation , Epitopes, T-Lymphocyte , Epitopes, B-Lymphocyte , Peptides , Vaccines, Subunit , Amino Acids , Endopeptidases , Computational Biology
4.
Front Immunol ; 14: 1151659, 2023.
Article in English | MEDLINE | ID: covidwho-20238702

ABSTRACT

Induction of a lasting protective immune response is dependent on presentation of epitopes to patrolling T cells through the HLA complex. While peptide:HLA (pHLA) complex affinity alone is widely exploited for epitope selection, we demonstrate that including the pHLA complex stability as a selection parameter can significantly reduce the high false discovery rate observed with predicted affinity. In this study, pHLA complex stability was measured on three common class I alleles and 1286 overlapping 9-mer peptides derived from the SARS-CoV-2 Spike protein. Peptides were pooled based on measured stability and predicted affinity. Strikingly, stability of the pHLA complex was shown to strongly select for immunogenic epitopes able to activate functional CD8+T cells. This result was observed across the three studied alleles and in both vaccinated and convalescent COVID-19 donors. Deconvolution of peptide pools showed that specific CD8+T cells recognized one or two dominant epitopes. Moreover, SARS-CoV-2 specific CD8+T cells were detected by tetramer-staining across multiple donors. In conclusion, we show that stability analysis of pHLA is a key factor for identifying immunogenic epitopes.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Epitopes, T-Lymphocyte , CD8-Positive T-Lymphocytes , Peptides , Histocompatibility Antigens
5.
Methods Mol Biol ; 2673: 431-452, 2023.
Article in English | MEDLINE | ID: covidwho-20233939

ABSTRACT

Since the onset of the COVID-19 pandemic, a number of approaches have been adopted by the scientific communities for developing efficient vaccine candidate against SARS-CoV-2. Conventional approaches of developing a vaccine require a long time and a series of trials and errors which indeed limit the feasibility of such approaches for developing a dependable vaccine in an emergency situation like the COVID-19 pandemic. Hitherto, most of the available vaccines have been developed against a particular antigen of SARS-CoV, spike protein in most of the cases, and intriguingly, these vaccines are not effective against all the pathogenic coronaviruses. In this context, immunoinformatics-based reverse vaccinology approaches enable a robust design of efficacious peptide-based vaccines against all the infectious strains of coronaviruses within a short frame of time. In this chapter, we enumerate the methodological trajectory of developing a universal anti-SARS-CoV-2 vaccine, namely, "AbhiSCoVac," through advanced computational biology-based immunoinformatics approach and its in-silico validation using molecular dynamics simulations.


Subject(s)
COVID-19 , Viral Vaccines , Humans , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Pandemics/prevention & control , Molecular Docking Simulation , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Vaccines, Subunit , Computational Biology
6.
Biotechnol Lett ; 45(7): 779-797, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2317808

ABSTRACT

BACKGROUND: COVID-19 has proved to be a fatal disease of the year 2020, due to which thousands of people globally have lost their lives, and still, the infection cases are at a high rate. Experimental studies suggested that SARS-CoV-2 interacts with various microorganisms, and this coinfection is accountable for the augmentation of infection severity. METHODS AND RESULTS: In this study, we have designed a multi-pathogen vaccine by involving the immunogenic proteins from S. pneumonia, H. influenza, and M. tuberculosis, as they are dominantly associated with SARS-CoV-2. A total of 8 antigenic protein sequences were selected to predict B-cell, HTL, and CTL epitopes restricted to the most prevalent HLA alleles. The selected epitopes were antigenic, non-allergenic, and non-toxic and were linked with adjuvant and linkers to make the vaccine protein more immunogenic, stable, and flexible. The tertiary structure, Ramachandran plot, and discontinuous B-cell epitopes were predicted. Docking and MD simulation study has shown efficient binding of the chimeric vaccine with the TLR4 receptor. CONCLUSION: The in silico immune simulation analysis has shown a high level of cytokines and IgG after a three-dose injection. Hence, this strategy could be a better way to decrease the disease's severity and could be used as a weapon to prevent this pandemic.


Subject(s)
COVID-19 , Coinfection , Viral Vaccines , Humans , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines , Epitopes, T-Lymphocyte/genetics , Molecular Docking Simulation , Vaccines, Subunit , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/chemistry , Computational Biology/methods
7.
PLoS One ; 18(4): e0284264, 2023.
Article in English | MEDLINE | ID: covidwho-2299666

ABSTRACT

Rational design of new vaccines against pulmonary tuberculosis is imperative. Early secreted antigens (Esx) G and H are involved in metal uptake, drug resistance, and immune response evasion. These characteristics make it an ideal target for rational vaccine development. The aim of this study is to show the rational design of epitope-based peptide vaccines by using bioinformatics and structural vaccinology tools. A total of 4.15 µs of Molecular Dynamics simulations were carried out to describe the behavior in solution of heterodimer, single epitopes, and epitopes loaded into MHC-II complexes. In order to predict T and B cell epitopes for antigenic activation, bioinformatic tools were used. Hence, we propose three epitopes with the potential to design pulmonary tuberculosis vaccines. The possible use of the proposed epitopes includes subunit vaccines, as a booster in BCG vaccination to improve its immune response, as well as the generation of antibodies that interfere with the Mycobacterium tuberculosis homeostasis, affecting its survival.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/prevention & control , Metals , Epitopes, B-Lymphocyte , Vaccine Development , Epitopes, T-Lymphocyte , Computational Biology , Vaccines, Subunit , Molecular Docking Simulation
8.
JCI Insight ; 8(7)2023 04 10.
Article in English | MEDLINE | ID: covidwho-2304483

ABSTRACT

Currently authorized COVID-19 vaccines induce humoral and cellular responses to epitopes in the SARS-CoV-2 spike protein, though the relative roles of antibodies and T cells in protection are not well understood. To understand the role of vaccine-elicited T cell responses in protection, we established a T cell-only vaccine using a DC-targeted lentiviral vector expressing single CD8+ T cell epitopes of the viral nucleocapsid, spike, and ORF1. Immunization of angiotensin-converting enzyme 2-transgenic mice with ex vivo lentiviral vector-transduced DCs or by direct injection of the vector induced the proliferation of functional antigen-specific CD8+ T cells, resulting in a 3-log decrease in virus load upon live virus challenge that was effective against the ancestral virus and Omicron variants. The Pfizer/BNT162b2 vaccine was also protective in mice, but the antibodies elicited did not cross-react on the Omicron variants, suggesting that the protection was mediated by T cells. The studies suggest that the T cell response plays an important role in vaccine protection. The findings suggest that the incorporation of additional T cell epitopes into current vaccines would increase their effectiveness and broaden protection.


Subject(s)
COVID-19 , Vaccines , Animals , Humans , Mice , COVID-19/prevention & control , COVID-19 Vaccines , Epitopes, T-Lymphocyte , BNT162 Vaccine , SARS-CoV-2 , Antibodies , Mice, Transgenic , Models, Animal
9.
Front Immunol ; 14: 1126392, 2023.
Article in English | MEDLINE | ID: covidwho-2302131

ABSTRACT

Because of the rapid mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an effective vaccine against SARS-CoV-2 variants is needed to prevent coronavirus disease 2019 (COVID-19). T cells, in addition to neutralizing antibodies, are an important component of naturally acquired protective immunity, and a number of studies have shown that T cells induced by natural infection or vaccination contribute significantly to protection against several viral infections including SARS-CoV-2. However, it has never been tested whether a T cell-inducing vaccine can provide significant protection against SARS-CoV-2 infection in the absence of preexisting antibodies. In this study, we designed and evaluated lipid nanoparticle (LNP) formulated mRNA vaccines that induce only T cell responses or both T cell and neutralizing antibody responses by using two mRNAs. One mRNA encodes SARS-CoV-2 Omicron Spike protein in prefusion conformation for induction of neutralizing antibodies. The other mRNA encodes over one hundred T cell epitopes (multi-T cell epitope or MTE) derived from non-Spike but conserved regions of the SARS-CoV-2. We show immunization with MTE mRNA alone protected mice from lethal challenge with the SARS-CoV-2 Delta variant or a mouse-adapted virus MA30. Immunization with both mRNAs induced the best protection with the lowest viral titer in the lung. These results demonstrate that induction of T cell responses, in the absence of preexisting antibodies, is sufficient to confer protection against severe disease, and that a vaccine containing mRNAs encoding both the Spike and MTE could be further developed as a universal SARS-CoV-2 vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Mice , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , Epitopes, T-Lymphocyte , RNA, Messenger/genetics
10.
Front Immunol ; 14: 1166546, 2023.
Article in English | MEDLINE | ID: covidwho-2301745

ABSTRACT

The global SARS-CoV-2 pandemic caused significant social and economic disruption worldwide, despite highly effective vaccines being developed at an unprecedented speed. Because the first licensed vaccines target only single B-cell antigens, antigenic drift could lead to loss of efficacy against emerging SARS-CoV-2 variants. Improving B-cell vaccines by including multiple T-cell epitopes could solve this problem. Here, we show that in silico predicted MHC class I/II ligands induce robust T-cell responses and protect against severe disease in genetically modified K18-hACE2/BL6 mice susceptible to SARS-CoV-2 infection.


Subject(s)
COVID-19 , Vaccines, DNA , Animals , Mice , COVID-19/prevention & control , DNA , Epitopes, T-Lymphocyte , Immunization , SARS-CoV-2
11.
Viruses ; 15(3)2023 03 16.
Article in English | MEDLINE | ID: covidwho-2286270

ABSTRACT

T-cell immunity plays an important role in the control of SARS-CoV-2 and has a great cross-protective effect on the variants. The Omicron BA.1 variant contains more than 30 mutations in the spike and severely evades humoral immunity. To understand how Omicron BA.1 spike mutations affect cellular immunity, the T-cell epitopes of SARS-CoV-2 wild-type and Omicron BA.1 spike in BALB/c (H-2d) and C57BL/6 mice (H-2b) were mapped through IFNγ ELISpot and intracellular cytokine staining assays. The epitopes were identified and verified in splenocytes from mice vaccinated with the adenovirus type 5 vector encoding the homologous spike, and the positive peptides involved in spike mutations were tested against wide-type and Omicron BA.1 vaccines. A total of eleven T-cell epitopes of wild-type and Omicron BA.1 spike were identified in BALB/c mice, and nine were identified in C57BL/6 mice, only two of which were CD4+ T-cell epitopes and most of which were CD8+ T-cell epitopes. The A67V and Del 69-70 mutations in Omicron BA.1 spike abolished one epitope in wild-type spike, and the T478K, E484A, Q493R, G496S and H655Y mutations resulted in three new epitopes in Omicron BA.1 spike, while the Y505H mutation did not affect the epitope. These data describe the difference of T-cell epitopes in SARS-CoV-2 wild-type and Omicron BA.1 spike in H-2b and H-2d mice, providing a better understanding of the effects of Omicron BA.1 spike mutations on cellular immunity.


Subject(s)
COVID-19 , Epitopes, T-Lymphocyte , Animals , Mice , Mice, Inbred C57BL , Epitopes, T-Lymphocyte/genetics , SARS-CoV-2/genetics , Mutation , Mice, Inbred BALB C
12.
Front Immunol ; 14: 1169034, 2023.
Article in English | MEDLINE | ID: covidwho-2264720
13.
Angew Chem Int Ed Engl ; 62(21): e202301147, 2023 05 15.
Article in English | MEDLINE | ID: covidwho-2281045

ABSTRACT

Peptide vaccines have advantages in easy fabrication and high safety, but their effectiveness is hampered by the poor immunogenicity of the epitopes themselves. Herein, we constructed a series of framework nucleic acids (FNAs) with regulated rigidity and size to precisely organize epitopes in order to reveal the influence of epitope spacing and carrier rigidity on the efficiency of peptide vaccines. We found that assembling epitopes on rigid tetrahedral FNAs (tFNAs) with the appropriate size could efficiently enhance their immunogenicity. Further, by integrating epitopes from SARS-CoV-2 on preferred tFNAs, we constructed a COVID-19 peptide vaccine which could induce high titers of IgG against the receptor binding domain (RBD) of SARS-CoV-2 spike protein and increase the ratio of memory B and T cells in mice. Considering the good biocompatibility of tFNAs, our research provides a new idea for developing efficient peptide vaccines against viruses and possibly other diseases.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Mice , COVID-19/prevention & control , SARS-CoV-2/metabolism , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/metabolism , Epitopes, B-Lymphocyte/chemistry , Peptides , Vaccines, Subunit
14.
Viral Immunol ; 36(3): 186-202, 2023 04.
Article in English | MEDLINE | ID: covidwho-2280776

ABSTRACT

Emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants have raised concerns about the efficacy of vaccines. The present study aimed to compare the potential of Delta and Omicron variant-specific mRNA vaccines in inducing immune responses. B cell and T cell epitopes and population coverage of spike (S) glycoprotein of the variants were predicted using the Immune Epitope Database. The molecular docking was carried out between the protein and different toll-like receptors, as well as the receptor-binding domain (RBD) protein and angiotensin-converting-enzyme 2 (ACE2) cellular receptor using ClusPro. The molecular simulation was done for each docked RBD-ACE2 using YASARA. The mRNA secondary structure was predicted through the RNAfold. The simulation of immune responses to the mRNA vaccine construct was performed using C-ImmSim. Apart from a few positions, no significant difference was observed in the prediction of S protein B cell and T cell epitopes of these two variants. The lower amounts of Median consensus percentile in the Delta variant in similar positions signify its stronger affinity to major histocompatibility complex (MHC) II binding alleles. Docking of Delta S protein with TLR3, TLR4, and TLR7 and also its RBD with ACE2 showed striking interactions with the lower binding energy than Omicron. In the immune simulation, elevated levels of cytotoxic T lymphocytes, helper T lymphocytes, and memory cells in both the active and resting states and the main regulators of the immune system suggested the capacity of mRNA constructs to elicit robust immune responses against SARS-CoV-2 variants. Considering slight differences in the binding affinity to MHC II binding alleles, activation of TLRs, mRNA secondary structure stability, and concentration of immunoglobulins and cytokines, the Delta variant is suggested for the mRNA vaccine construction. Further studies are being done to prove the efficiency of the design construct.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2 , Epitopes, T-Lymphocyte/genetics , Molecular Docking Simulation , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/genetics
15.
BMC Bioinformatics ; 24(1): 67, 2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2280689

ABSTRACT

BACKGROUND: Streptococcus pneumoniae (Pneumococcus) has remained a leading cause of fatal infections such as pneumonia, meningitis, and sepsis. Moreover, this pathogen plays a major role in bacterial co-infection in patients with life-threatening respiratory virus diseases such as influenza and COVID-19. High morbidity and mortality in over one million cases, especially in very young children and the elderly, are the main motivations for pneumococcal vaccine development. Due to the limitations of the currently marketed polysaccharide-based vaccines, non-serotype-specific protein-based vaccines have received wide research interest in recent years. One step further is to identify high antigenic regions within multiple highly-conserved proteins in order to develop peptide vaccines that can affect various stages of pneumococcal infection, providing broader serotype coverage and more effective protection. In this study, immunoinformatics tools were used to design an effective multi-epitope vaccine in order to elicit neutralizing antibodies against multiple strains of pneumococcus. RESULTS: The B- and T-cell epitopes from highly protective antigens PspA (clades 1-5) and PhtD were predicted and immunodominant peptides were linked to each other with proper linkers. The domain 4 of Ply, as a potential TLR4 agonist adjuvant candidate, was attached to the end of the construct to enhance the immunogenicity of the epitope vaccine. The evaluation of the physicochemical and immunological properties showed that the final construct was stable, soluble, antigenic, and non-allergenic. Furthermore, the protein was found to be acidic and hydrophilic in nature. The protein 3D-structure was built and refined, and the Ramachandran plot, ProSA-web, ERRAT, and Verify3D validated the quality of the final model. Molecular docking analysis showed that the designed construct via Ply domain 4 had a strong interaction with TLR4. The structural stability of the docked complex was confirmed by molecular dynamics. Finally, codon optimization was performed for gene expression in E. coli, followed by in silico cloning in the pET28a(+) vector. CONCLUSION: The computational analysis of the construct showed acceptable results, however, the suggested vaccine needs to be experimentally verified in laboratory to ensure its safety and immunogenicity.


Subject(s)
COVID-19 , Streptococcus pneumoniae , Child , Humans , Child, Preschool , Aged , Molecular Docking Simulation , Escherichia coli , Toll-Like Receptor 4 , Epitopes, T-Lymphocyte/chemistry , Vaccines, Subunit/chemistry , Vaccines, Subunit/genetics , Epitopes, B-Lymphocyte , Computational Biology/methods
16.
Vaccine ; 41(12): 2073-2083, 2023 03 17.
Article in English | MEDLINE | ID: covidwho-2269805

ABSTRACT

Somatic mutation-derived neoantigens are associated with patient survival in breast and ovarian cancer. These neoantigens are targets for cancer, as shown by the implementation of neoepitope peptides as cancer vaccines. The success of cost-effective multi-epitope mRNA vaccines against SARS-Cov-2 in the pandemic established a model for reverse vaccinology. In this study, we aimed to develop an in silico pipeline designing an mRNA vaccine of the CA-125 neoantigen against breast and ovarian cancer, respectively. Using immuno-bioinformatics tools, we predicted cytotoxic CD8+ T cell epitopes based on somatic mutation-driven neoantigens of CA-125 in breast or ovarian cancer, constructed a self-adjuvant mRNA vaccine with CD40L and MHC-I -targeting domain to enhance cross-presentation of neoepitopes by dendritic cells. With an in silico ImmSim algorithm, we estimated the immune responses post-immunization, showing IFN-γ and CD8+ T cell response. The strategy described in this study may be scaled up and implemented to design precision multi-epitope mRNA vaccines by targeting multiple neoantigens.


Subject(s)
Cancer Vaccines , Ovarian Neoplasms , mRNA Vaccines , Female , Humans , Antigens, Neoplasm/genetics , Epitopes, T-Lymphocyte/genetics , Ovarian Neoplasms/therapy , CA-125 Antigen
17.
Viruses ; 15(3)2023 02 24.
Article in English | MEDLINE | ID: covidwho-2248637

ABSTRACT

SARS-CoV-2 has caused the COVID-19 pandemic, with over 673 million infections and 6.85 million deaths globally. Novel mRNA and viral-vectored vaccines were developed and licensed for global immunizations under emergency approval. They have demonstrated good safety and high protective efficacy against the SARS-CoV-2 Wuhan strain. However, the emergence of highly infectious and transmissible variants of concern (VOCs) such as Omicron was associated with considerable reductions in the protective efficacy of the current vaccines. The development of next-generation vaccines that could confer broad protection against both the SARS-CoV-2 Wuhan strain and VOCs is urgently needed. A bivalent mRNA vaccine encoding the Spike proteins of both the SARS-CoV-2 Wuhan strain and the Omicron variant has been constructed and approved by the US FDA. However, mRNA vaccines are associated with instability and require an extremely low temperature (-80 °C) for storage and transportation. They also require complex synthesis and multiple chromatographic purifications. Peptide-based next-generation vaccines could be developed by relying on in silico predictions to identify peptides specifying highly conserved B, CD4+ and CD8+ T cell epitopes to elicit broad and long-lasting immune protection. These epitopes were validated in animal models and in early phase clinical trials to demonstrate immunogenicity and safety. Next-generation peptide vaccine formulations could be developed to incorporate only naked peptides, but they are costly to synthesize and production would generate extensive chemical waste. Continual production of recombinant peptides specifying immunogenic B and T cell epitopes could be achieved in hosts such as E. coli or yeast. However, recombinant protein/peptide vaccines require purification before administration. The DNA vaccine might serve as the most effective next-generation vaccine for low-income countries, since it does not require an extremely low temperature for storage or need extensive chromatographic purification. The construction of recombinant plasmids carrying genes specifying highly conserved B and T cell epitopes meant that vaccine candidates representing highly conserved antigenic regions could be rapidly developed. Poor immunogenicity of DNA vaccines could be overcome by the incorporation of chemical or molecular adjuvants and the development of nanoparticles for effective delivery.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Animals , Humans , SARS-CoV-2/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Epitopes, T-Lymphocyte/genetics , Escherichia coli , Pandemics/prevention & control , Vaccines, DNA/genetics , Viral Vaccines/genetics , Vaccines, Combined
18.
J Biol Chem ; 299(4): 103035, 2023 04.
Article in English | MEDLINE | ID: covidwho-2246406

ABSTRACT

T cells play a crucial role in combatting SARS-CoV-2 and forming long-term memory responses to this coronavirus. The emergence of SARS-CoV-2 variants that can evade T cell immunity has raised concerns about vaccine efficacy and the risk of reinfection. Some SARS-CoV-2 T cell epitopes elicit clonally restricted CD8+ T cell responses characterized by T cell receptors (TCRs) that lack structural diversity. Mutations in such epitopes can lead to loss of recognition by most T cells specific for that epitope, facilitating viral escape. Here, we studied an HLA-A2-restricted spike protein epitope (RLQ) that elicits CD8+ T cell responses in COVID-19 convalescent patients characterized by highly diverse TCRs. We previously reported the structure of an RLQ-specific TCR (RLQ3) with greatly reduced recognition of the most common natural variant of the RLQ epitope (T1006I). Opposite to RLQ3, TCR RLQ7 recognizes T1006I with even higher functional avidity than the WT epitope. To explain the ability of RLQ7, but not RLQ3, to tolerate the T1006I mutation, we determined structures of RLQ7 bound to RLQ-HLA-A2 and T1006I-HLA-A2. These complexes show that there are multiple structural solutions to recognizing RLQ and thereby generating a clonally diverse T cell response to this epitope that assures protection against viral escape and T cell clonal loss.


Subject(s)
COVID-19 , Receptors, Antigen, T-Cell , SARS-CoV-2 , Humans , CD8-Positive T-Lymphocytes , COVID-19/immunology , Epitopes, T-Lymphocyte , HLA-A2 Antigen , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
19.
Viruses ; 15(1)2022 Dec 29.
Article in English | MEDLINE | ID: covidwho-2240516

ABSTRACT

SARS-CoV-2 Omicron (B.1.1.529) lineages rapidly became dominant in various countries reflecting its enhanced transmissibility and ability to escape neutralizing antibodies. Although T cells induced by ancestral SARS-CoV-2-based vaccines also recognize Omicron variants, we showed in our previous study that there was a marked loss of T cell cross-reactivity to spike epitopes harboring Omicron BA.1 mutations. The emerging BA.4/BA.5 subvariants carry other spike mutations than the BA.1 variant. The present study aims to investigate the impact of BA.4/BA.5 spike mutations on T cell cross-reactivity at the epitope level. Here, we focused on universal T-helper epitopes predicted to be presented by multiple common HLA class II molecules for broad population coverage. Fifteen universal T-helper epitopes of ancestral spike, which contain mutations in the Omicron BA.4/BA.5 variants, were identified utilizing a bioinformatic tool. T cells isolated from 10 subjects, who were recently vaccinated with mRNA-based BNT162b2, were tested for functional cross-reactivity between epitopes of ancestral SARS-CoV-2 spike and the Omicron BA.4/BA.5 spike counterparts. Reduced T cell cross-reactivity in one or more vaccinees was observed against 87% of the tested 15 non-conserved CD4+ T cell epitopes. These results should be considered for vaccine boosting strategies to protect against Omicron BA.4/BA.5 and future SARS-CoV-2 variants.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2/genetics , T-Lymphocytes , Mutation , Antibodies, Neutralizing , COVID-19 Vaccines , Epitopes, T-Lymphocyte/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral
20.
Front Immunol ; 13: 1044025, 2022.
Article in English | MEDLINE | ID: covidwho-2238731

ABSTRACT

Current vaccines against SARS-CoV-2, based on the original Wuhan sequence, induce antibodies with different degrees of cross-recognition of new viral variants of concern. Despite potent responses generated in vaccinated and infected individuals, the Omicron (B.1.1.529) variant causes breakthrough infections, facilitating viral transmission. We previously reported a vaccine based on a cyclic peptide containing the 446-488 S1 sequence (446-488cc) of the SARS-CoV-2 spike (S) protein from Wuhan isolate. To provide the best immunity against Omicron, here we compared Omicron-specific immunity induced by a Wuhan-based 446-488cc peptide, by a Wuhan-based recombinant receptor-binding domain (RBD) vaccine and by a new 446-488cc peptide vaccine based on the Omicron sequence. Antibodies induced by Wuhan peptide 446-488cc in three murine strains not only recognized the Wuhan and Omicron 446-488 peptides similarly, but also Wuhan and Omicron RBD protein variants. By contrast, antibodies induced by the Wuhan recombinant RBD vaccine showed a much poorer cross-reactivity for the Omicron RBD despite similar recognition of Wuhan and Omicron peptide variants. Finally, although the Omicron-based 446-488cc peptide vaccine was poorly immunogenic in mice due to the loss of T cell epitopes, co-immunization with Omicron peptide 446-488cc and exogenous T cell epitopes induced strong cross-reactive antibodies that neutralized Omicron SARS-CoV-2 virus. Since mutations occurring within this sequence do not alter T cell epitopes in humans, these results indicate the robust immunogenicity of 446-488cc-based peptide vaccines that induce antibodies with a high cross-recognition capacity against Omicron, and suggest that this sequence could be included in future vaccines targeting the Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mice , COVID-19 Vaccines , Epitopes, T-Lymphocyte , COVID-19/prevention & control , Vaccines, Subunit , Antibodies
SELECTION OF CITATIONS
SEARCH DETAIL